Voltage Gating of Shaker K+ Channels

نویسندگان

  • Beatriz M. Rodríguez
  • Daniel Sigg
  • Francisco Bezanilla
چکیده

Ionic (Ii) and gating currents (Ig) from noninactivating Shaker H4 K+ channels were recorded with the cut-open oocyte voltage clamp and macropatch techniques. Steady state and kinetic properties were studied in the temperature range 2-22 degreesC. The time course of Ii elicited by large depolarizations consists of an initial delay followed by an exponential rise with two kinetic components. The main Ii component is highly temperature dependent (Q10 > 4) and mildly voltage dependent, having a valence times the fraction of electric field (z) of 0.2-0.3 eo. The Ig On response obtained between -60 and 20 mV consists of a rising phase followed by a decay with fast and slow kinetic components. The main Ig component of decay is highly temperature dependent (Q10 > 4) and has a z between 1.6 and 2.8 eo in the voltage range from -60 to -10 mV, and approximately 0.45 eo at more depolarized potentials. After a pulse to 0 mV, a variable recovery period at -50 mV reactivates the gating charge with a high temperature dependence (Q10 > 4). In contrast, the reactivation occurring between -90 and -50 mV has a Q10 = 1.2. Fluctuation analysis of ionic currents reveals that the open probability decreases 20% between 18 and 8 degreesC and the unitary conductance has a low temperature dependence with a Q10 of 1.44. Plots of conductance and gating charge displacement are displaced to the left along the voltage axis when the temperature is decreased. The temperature data suggests that activation consists of a series of early steps with low enthalpic and negative entropic changes, followed by at least one step with high enthalpic and positive entropic changes, leading to final transition to the open state, which has a negative entropic change.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage-Sensing Residues in the S2 and S4 Segments of the Shaker K+ Channel

The activation of Shaker K+ channels is steeply voltage dependent. To determine whether conserved charged amino acids in putative transmembrane segments S2, S3, and S4 contribute to the gating charge of the channel, the total gating charge movement per channel was measured in channels containing neutralization mutations. Of eight residues tested, four contributed significantly to the gating cha...

متن کامل

Contribution of the S4 Segment to Gating Charge in the Shaker K+ Channel

Voltage-activated ion channels respond to changes in membrane voltage by coupling the movement of charges to channel opening. A K+ channel-specific radioligand was designed and used to determine the origin of these gating charges in the Shaker K+ channel. Opening of a Shaker K+ channel is associated with a displacement of 13.6 electron charge units. Gating charge contributions were determined f...

متن کامل

Electrostatic model of S4 motion in voltage-gated ion channels.

The S4 transmembrane domain of the family of voltage-gated ion channels is generally thought to be the voltage sensor, whose translocation by an applied electric field produces the gating current. Experiments on hSkMI Na(+) channels and both Shaker and EAG K(+) channels indicate which S4 residues cross the membrane-solution interface during activation gating. Using this structural information, ...

متن کامل

Alkanols inhibit voltage-gated K+ channels via a distinct gating modifying mechanism that prevents gate opening

Alkanols are small aliphatic compounds that inhibit voltage-gated K(+) (K(v)) channels through a yet unresolved gating mechanism. K(v) channels detect changes in the membrane potential with their voltage-sensing domains (VSDs) that reorient and generate a transient gating current. Both 1-Butanol (1-BuOH) and 1-Hexanol (1-HeOH) inhibited the ionic currents of the Shaker K(v) channel in a concent...

متن کامل

A Gastropod Toxin Selectively Slows Early Transitions in the Shaker K Channel's Activation Pathway

A toxin from a marine gastropod's defensive mucus, a disulfide-linked dimer of 6-bromo-2-mercaptotryptamine (BrMT), was found to inhibit voltage-gated potassium channels by a novel mechanism. Voltage-clamp experiments with Shaker K channels reveal that externally applied BrMT slows channel opening but not closing. BrMT slows K channel activation in a graded fashion: channels activate progressiv...

متن کامل

Gating of single Shaker potassium channels in Drosophila muscle and in Xenopus oocytes injected with Shaker mRNA.

The voltage-dependent gating mechanism of single A-type potassium channels coded for by the Shaker locus of Drosophila was studied by single-channel recording. A-type channels expressed in Xenopus oocytes injected with Shaker B and Shaker D mRNA exhibited gating and voltage dependence that were qualitatively similar to those of the native Shaker A-types channels from embryonic myotubes. In all ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 112  شماره 

صفحات  -

تاریخ انتشار 1998